Fitting advice and guide for soft contact lenses

Diameter and Base curve choice for the first contact lens

1. Measurement of the corneal diameter (HVID + 0.6 mm)* and K-readings
2. Determine the contact lens diameter ØT (use table below)
3. Determine of the Base curve \(r_0 = r_{cfl} + BCf \) (use table below, \(r_{cfl} \) = flattest central K)

<table>
<thead>
<tr>
<th>Contact lens diameter</th>
<th>Corneal diameter small</th>
<th>Corneal diameter medium</th>
<th>Corneal diameter large</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØCorna + 2.10 mm / BCf = 0.60 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ØCorna + 2.30 mm / BCf = 0.70 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ØCorna + 2.50 mm / BCf = 0.80 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Parameter for Toris Ballast:
Cornea parameters: ØCornea = 11.70 mm / Kreading = 7.80 / 7.70 mm
- ØT = 11.70 mm + 2.30 mm = 14.00 mm
- \(r_0 = 7.80 mm + 0.70 mm = 8.50 mm \)

for 0.40 mm delta K, reduce 0.10 mm on \(r_0 \)

Definitive 74: 0.10 mm steeper

* Information: 80% of the corneal curves are statistically between 11.3 and 12.1 mm.

Progress of the adaptation

1. Insert trial lens for a duration of between 30 minutes and 2 hours. Over refraction (you can use the autorefractometer for getting an idea of cyl/axis).
2. Biomicroscopy (× 10 to 15) white light: observe the lens with patient looking straight ahead and during eye movement.
3. Mobility by eyelid movement, (Push up test).
4. Sag of the lens should be from 1 to 2 mm downwards.
5. Appearance of the front optic zone: tear film, hydration, lubrication, deposit.
6. Keratometry on the contact lens: (deformation of the mires).
7. Check for corneal and conjunctival staining with fluorescein after lens removal.
8. Order the definitive lens on the basis of the SN.